Anderson, J. C., I. Helman, R. A. Shaw, and W. Cantrell, 2024: Droplet growth or evaporation does not buffer the variability in supersaturation in clean clouds. Journal of the Atmospheric Sciences, 81, 225-233, doi:10.1175/JAS-D-23-0104.1.
Salesky, S. T., K. Gillis, J. Anderson, I. Helman, W. Cantrell, and R. A. Shaw, 2024: Modeling the subgrid scale scalar variance: a priori tests and application to supersaturation in cloud turbulence. Journal of the Atmospheric Sciences, 81, 839-853.
Wang, A., M. Ovchinnikov, F. Yang, S. Schmalfuss, and R. A. Shaw, 2024: Designing a convection-cloud chamber for collision-coalescence using atmospheric large-eddy simulation with bin microphysics. Journal of Advances in Modeling Earth Systems, 16, e2023MS003734.
Zhu, Z., F. Yang, P. Kollias, R. A. Shaw, A. Kostinski, S. Krueger, K. Lamer, N. Allwayin, and M. Oue, 2024: Detection of small drizzle droplets in a large cloud chamber using high-resolution radar. Atmospheric Measurement Techniques, 17, 1133-1143.
Anderson, J. C., P. Beeler, M. Ovchinnikov, W. Cantrell, S. Krueger, R. A. Shaw, F. Yang, and L. Fierce, 2023: Enhancements in cloud condensation nuclei activity from turbulent fluctuations in supersaturation. Geophysical Research Letters, 50, e2022GL102635.
Chandrakar, K. K., H. Morrison, and R. A. Shaw, 2023: Lagrangian and Eulerian supersaturation statistics in turbulent cloudy Rayleigh-Bénard convection: Applications for LES subgrid modeling. Journal of the Atmospheric Sciences, 80, 2261-2285.
Shaw, R. A., S. Thomas, P. Prabhakaran, W. Cantrell, M. Ovchinnikov, and F. Yang, 2023: Fast and slow microphysics regimes in a minimalist model of cloudy Rayleigh-Bénard convection. Physical Review Research, 5, 043018.
Thomas, S., F. Yang, M. Ovchinnikov, W. Cantrell, and R. A. Shaw, 2023: Scaling of turbulence and microphysics in a convection-cloud chamber of varying height. Journal of Advances in Modeling Earth Systems, 15, e2022MS003304.
Yang, F., F. Hoffmann, R. A. Shaw, M. Ovchinnikov, and A. Vogelmann, 2023: An intercomparison of large-eddy simulations of a convection cloud chamber using haze-capable bin and Lagrangian cloud microphysics schemes. Journal of Advances in Modeling Earth Systems, 15, e2022MS003270.
Yeom, J., I. Helman, P. Prabhakaran, J. Anderson, F. Yang, R. A. Shaw, and W. Cantrell, 2023: Cloud microphysical response to entrainment and mixing is locally inhomogeneous and globally homogeneous: Evidence from the lab. Proceedings of the National Academy of Science, 120, e2307354120.
Chandrakar, K. K., H. Morrison, W. W. Grabowski, G. H. Bryan, and R. A. Shaw, 2022: Supersaturation variability from scalar mixing: Evaluation of a new subgrid-scale model using direct numerical simulations of Rayleigh-Bénard convection. Journal of the Atmospheric Sciences, 79, 1191-1210.
MacMillan, T., R. A. Shaw, W. H. Cantrell, and D. H. Richter, 2022: Direct numerical simulation of turbulence and microphysics in the Pi Chamber. Physical Review Fluids, 7, 020501.
Prabhakaran, P., S. Thomas, W. Cantrell, R. A. Shaw, and F. Yang, 2022: Sources of stochasticity in the growth of cloud droplets: supersaturation fluctuations versus turbulent transport. Journal of the Atmospheric Sciences, 79, 3145-3162.
Thomas, S., P. Prabhakaran, F. Yang, W. Cantrell, and R. A. Shaw, 2022: Dimensionless parameters for cloudy Rayleigh-Bénard convection: Supersaturation, Damköhler, and Nusselt numbers. Physical Review Fluids, 7, 010503.
Yang, F., M. Ovchinnikov, S. Thomas, A. Khain, R. McGraw, R. A. Shaw, and A. M. Vogelmann, 2022: Large-eddy simulations of a convection cloud chamber: Sensitivity to bin microphysics and advection. Journal of Advances in Modeling Earth Systems, 14, e2021MS002895.
Anderson, J. C., S. Thomas, P. Prabhakaran, R. A. Shaw, and W. Cantrell. Effects of the large-scale circulation on temperature and water vapor distributions in the Π Chamber. Atmospheric Measurement Techniques Discussions, 1-19 (2021).
Shawon, A. S. M., P. Prabhakaran, G. Kinney, R. A. Shaw, and W. Cantrell: Dependence of aerosol‐droplet partitioning on turbulence in a laboratory cloud. Journal of Geophysical Research: Atmospheres, 126, e2020JD033799 (2021).
Thomas, S., P. Prabhakaran, W. Cantrell, and R. A. Shaw. Is the water vapor supersaturation distribution Gaussian? Journal of the Atmospheric Sciences, 78 (2021).
Chandrakar, K. K., W. Cantrell, S. Krueger, R. A. Shaw, and S. Wunsch: Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: A two-scalar transport problem. Journal of Fluid Mechanics, 884, A19, doi:10.1017/jfm.2019.895 (2020).
Droplet size distributions in turbulent clouds: Experimental evaluation of theoretical distributions. Quarterly Journal of the Royal Meteorological Society, 146, 483-504 (2020).
, I. Cantrell, T. Gotoh, and R. A. Shaw:Packard, C. D., M. L. Larsen, S. Thomas, W. H. Cantrell, and R. A. Shaw: Light scattering in a turbulent cloud: simulations to explore cloud-chamber experiments. Atmosphere, 11, 837 (2020).
Prabhakaran, P., G. Kinney, W. Cantrell, R. A. Shaw, and E. Bodenschatz: High supersaturation in the wake of falling hydrometeors: Implications for cloud invigoration and ice nucleation. Geophysical Research Letters, 47, e2020GL088055 (2020).
Prabhakaran, P., A. S. M. Shawon, G. Kinney, S. Thomas, W. Cantrell, and R. A. Shaw: The role of turbulent fluctuations in aerosol activation and cloud formation. Proceedings of the National Academy of Sciences, 117, 16831-16838 (2020).
Shaw, R. A., W. Cantrell, S. Chen, P. Chuang, N. Donahue, G. Feingold, P. Kollias, A. Korolev, S. Kreidenweis, S. Krueger, J. P. Mellado, D. Niedermeier, L. Xue: Cloud–aerosol–turbulence interactions: science priorities and concepts for a large-scale laboratory facility. Bulletin of the American Meteorological Society, 101, E1026-E1035 (2020).
Bhandari J, S. China, K. K. Chandrakar, G. Kinney, W. Cantrell, R. A. Shaw, L. R. Mazzoleni, G. Girotto, N. Sharma, K. Gorkowski, S. Gilardoni, S. Decesari, M. C. Facchini, N. Zanca, G. Pavese, F. Esposito, M. K. Dubey, A. C. Aiken, R. K. Chakrabarty, H. Moosmüller, T. B. Onasch, R. A. Zaveri, B. V. Scarnato, P. Fialho, C. Mazzoleni. Extensive soot compaction by cloud processing from laboratory and field observations. Scientific Reports, 9, 11824 (2019).
Aerosol‐mediated glaciation of mixed‐phase clouds: Steady‐state laboratory measurements. Geophysical Research Letters, 46, 9154-9162 (2019).
, K. K.Packard, C. D., M. L. Larsen, W. Cantrell, and R. A. Shaw: Light scattering in a spatially-correlated particle field: Role of the radial distribution function. Journal of Quantitative Spectroscopy and Radiative Transfer, 236, 106601 (2019).
Scaling of an atmospheric model to simulate turbulence and cloud microphysics in the Pi Chamber. Journal of Advances in Modeling Earth Systems, 11, 1981-1994, https://doi.org/10.1029/2019MS001670 (2019).
, M. , F. , D. van der , W. , S. K. , and R. A.Chandrakar, K. K., W. Cantrell, A. B. Kostinski, & R. A. Shaw: Dispersion aerosol indirect effect in turbulent clouds: Laboratory measurements of effective radius. Geophysical Research Letters, 45, 10738-10745 (2018).
Chandrakar, K.K., W. Cantrell and R. A. Shaw: Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects. Journal of the Atmospheric Sciences, 75, 3191-3209 (2018).
Niedermeier, D., K. Chang, W. Cantrell, K. K. Chandrakar, D. Ciochetto, and R. A. Shaw: Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh-Bénard turbulence. Physical Review Fluids, 3, 083501 (2018).
Desai, N., K. K. Chandrakar, K. Chang, W. Cantrell, and R. A. Shaw: Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud. Journal of the Atmospheric Sciences, 75, 189-201 (2018).
Larsen, M. L., and R. A. Shaw: A method for computing the three-dimensional radial distribution function of cloud particles from holographic images. Atmospheric Measurement Techniques, 11, 4261-4272 (2018).
Packard, C. D., R. A. Shaw, W. H. Cantrell, G. M. Kinney, M. C. Roggemann, and J. R. Valenzuela: Measuring the detector-observed impact of optical blurring due to aerosols in a laboratory cloud chamber. Journal of Applied Remote Sensing, 12, 042404 (2018).
Chandrakar, K.K., W. Cantrell, D. Ciochetto, S. Karki, G. Kinney, and R. A. Shaw: Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence. Geophysical Research Letters, 44, 4359-4367 (2017).
Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw and F. Yang: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proceedings of the National Academy of Sciences, 113, 14243-14248 (2016).
Chang, K., J. Bench, M. Brege, W. Cantrell, K. K. Chandrakar, D. Ciochetto, C. Mazzoleni, L. R. Mazzoleni, D. Niedermeier, and R. A. Shaw: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bulletin of the American Meteorological Society, 97, 2343-2358 (2016). (Banner Photo)