Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices

ITO-NWs-OLEDs-Nanotech2012

Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 ◦C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6 × 10−4 cm) and high in visible transmittance (∼90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ∼30 mA cm−2 was detected at bias voltages of ∼19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.

Pulsed laser deposition of indium tin oxide nanowires in argon and helium

ITO-NWs-MatLett2012

Nanowires of indium tin oxide (ITO) were grown on catalyst-free amorphous glass substrates at relatively low temperature of 250 °C in argon and helium ambient by the Nd:YAG pulsed laser deposition technique. All the ITO samples showed crystalline structure due to substrate heating and the (400) X-ray diffraction peak became relatively stronger as the pressure was increased. The surface morphology was also changed from compact, polycrystalline thin-film layers to a dendritic layer consisting of nanowires for some limited pressure ranges. The transition from the normal thin-film structure to nanowires was likely due to the vapor–liquid–solid mechanism but under catalyst-free condition. These nanowires tended to grow perpen-dicularly on the glass substrate, as observed with the transmission electron microscopy (TEM), which also confirmed that these nanowires were crystalline.